
White PAper

Top Kubernetes
Security Risks & Best
Practices

Kubernetes has emerged as the leading orchestration platform of
containerized applications in the modern cloud ecosystem. This has
coincided with a steep increase in container adoption – CNFC’s 2022
annual survey showed that 76% of organizations that employ cloud-
native approaches use containers. However, this rise in popularity has
also made Kubernetes a target for threat actors and its security an
increasing concern for CISOs and security teams.

Top Kubernetes Security Risks & Best Practices

c-c-m

api

scheduleretcd

cm

kubelet

kubelet

kubelet

kubelet

kubelet

kubelet

Cloud Provider API

K8s Cluster

Control Plane

Node 1 Node 2 Node 3

Deploying Kubernetes involves clusters that are made up of nodes – the worker machines.  
Each node is either a virtual or physical machine that runs one or more “pods,” or running container
groups. A Kubernetes cluster also includes the control plane, which is the direct orchestrator of
the entire cluster. Every cluster needs at least one worker node to be included.

What is Kubernetes Security?
Kubernetes security refers to the practices, technologies, and processes designed to defend
cloud-native applications running on Kubernetes against malicious cyberattacks and
vulnerabilities. As an open-source platform, Kubernetes relies on containers and microservices
operating in the cloud. That creates its own unique security considerations for defending teams.

Effective Kubernetes security protects this entire infrastructure – clusters, nodes, and pods –
against unauthorized access, misconfigurations, malicious code, and vulnerabilities. Security
teams should employ proactive measures to protect Kubernetes across resources including:

Top Kubernetes Security Risks & Best Practices

ReplicaSets
Used to maintain a stable set of replica Pods running at any given time.

Jobs
Create one or more Pods and will continue to retry execution of the Pods until a specified number
of them successfully terminate.

CronJobs
Perform regularly scheduled actions such as backups, report generation, and so on.

StatefulSets
The workload API objects used to manage stateful applications. They manage the deployment and
scaling of a set of Pods, and provide guarantees about the ordering and uniqueness of these Pods.

DaemonSets
Ensure that all (or some) Nodes run a copy of a Pod.

Pods
A group of one or more containers that share storage and network resources.

Deployments
Act as the manager for your pods, ensuring they run according to your specifications.

Nodes
Individual machines (physical or virtual) that make up a Kubernetes cluster.

Modern Challenges in Kubernetes Security
The decentralized nature and open-source foundation of Kubernetes introduce challenges in
governance, visibility, and threat detection. While its large contributor base accelerates innovation,
it also increases the risk of malicious code inclusion or misconfigurations that may go unnoticed.
Below, we dive into the top Kubernetes risk vectors.

Vulnerable Container Images

Top Kubernetes Security Risks & Best Practices

Kubernetes does not validate container images for vulnerabilities, making unverified or outdated
images a critical threat vector. Security tools must be capable of automatically discovering,
analyzing, and prioritizing vulnerabilities throughout the CI/CD lifecycle and across the runtime
environment to maintain integrity.

of containerized
applications contain at
least one vulnerability

Source: 2023 Gartner Market Guide for Cloud-Native Application
Protection Platforms (CNAPP)

60%

Top Kubernetes Security Risks & Best Practices

User

K8’s Control Plane

 API Request

 Authentication Request Execution

 Authorization Admission Control

 Response

The Kubernetes API server is a primary interface and an attractive attack target. Improperly
secured APIs can allow unauthorized access, lateral movement, or denial-of-service (DoS) attacks.
Enterprise-grade solutions should offer centralized visibility, continuous monitoring, and runtime
detection of anomalous API behaviors, including privilege escalations and misconfigurations, even
in cloud-managed environments.

Kubernetes API Exploits

Top Kubernetes Security Risks & Best Practices

Minimize access to secrets

Scan now Create ticket

Control details

Statistics

Control status

Remediation

Scope definition

Violating controls

Scoped resources

Control details

General details

Kubernetes secrets hold sensitive data such as service account tokens and credentials, making it critical to restrict access to these

resources. Limiting access to secrets to the smallest group of trusted users minimizes the risk of unauthorized access and privilege

escalation, which could otherwise compromise the integrity of the entire cluster. Regularly review access control policies and ensure only

necessary users or services have access to secrets.

Control status Enabled

Control name 4.1.2. Minimize access to secrets

Category 4.1. RBAC and Service Accounts

Frameworks CIS Amazon Elastic Kubernetes Service Version 2.0/Revision 1.1

Search anythings Finding name Cloud account Identifier Resource name Clear filters

Showing 4 rows

Check Last scan Actions

Minimize access to secrets in Kubernetes Roles 11 Findings 1 min ago

Minimize access to secrets in Kubernetes ClusterRoles 28 Findings 1 min ago

Resource name

admin

AWS Demo / us-east-1 / upwind-cluster-2

admin

AWS Demo / us-east-2 / only-for-you

admin

Identifier

admin::a087ebe8-d7ac-413a-b..

admin::c304a71-d12a-4670-9...

Last scan

1 min ago

1 min ago

Actions

Findings Actions

Dismiss finding

Cluster Misconfigurations and Default Settings

Misconfigured clusters often result from overreliance on default configurations that prioritize
usability over security. These weaknesses expose workloads to data breaches and compliance
violations. Automated auditing and real-time detection of configuration drift are essential to
proactively remediate risks.

Top Kubernetes Security Risks & Best Practices

Lack of Network Visibility

Kubernetes defaults allow unrestricted pod-to-pod communication, increasing the risk of MitM
attacks and lateral movement. Lack of visibility into Kubernetes ingress communication between
clusters compounds the risk. Modern platforms must deliver fine-grained network visibility
showing continuous traffic flows to proactively identify risky behaviors and detect anomalies.

CVE-2021-42575 | Java HTML Sanitizer Remote Code Execution / keycloak

Comment Share Create ticket Status Open Assignee Select...

Overview

Risk analysis

Risk analysis

Internet Ingress

2

Narrow Internet 

Exposure

8080, 4040, 20

3

upwind_agent_sandox_2
Kubernetes deployment

Top findings

4

Vulnerabilities

45

Threat Detections

1

Configurations

345

Permissions

AWS Permissions

2

Kubernetes permissions

2

ClusterMetrics
Kubernetes service account

Privileges attribute

apachepinot

/pinot:0.10.0
Image

owasp-java-html-sanitizer
Package Shell command injection

CVE-2022-26112

Resource risk analysis

The resource is exposed to the internet with active ingress commutation through ports 8080, 4040 last seen 6 days ago. View connections

The resource has 1 critical, 2 high and 3 low severity active threat detections.

Top Kubernetes Security Risks & Best Practices

Runtime Threats to Containers

Containers can be compromised post-deployment due to permissive runtime policies or
vulnerable libraries. Runtime protection must include OS-level monitoring, behavioral detection,
and real-time threat response capabilities to guard against active exploitation.

A container is executing a reverse shell

Comment Share Create ticket Status Open Assignee Select...

Overview

Risk analysis

Trigger logs

Detection timeline

Other active threats

Respond & prevention

Remediation

Ticket details

Comments

Overview

A container within your environment is executing a reverse shell tool. A reverse shell is a session created on a connection initiated in an
opposite way than a normal connection from the resource to a potential actor's host. Threats actors create a reverse shell to execute
commands on the target after gaining initial access to the target.

Narrow Internet 

Exposure

8080, 4040, 20

3

Internet Ingress

2

upwind_agent_sandox_2
Kubernetes deployment

Top findings

4

Vulnerabilities

45

Threat Detections

1

Configurations

345

Permissions

AWS Permissions

2

Kubernetes permissions

2

ClusterMetrics
Kubernetes service account

Privileges attribute

Block storage

6

nc
Triggering event

2

Containers

8

pods

4

Kube Exec

Top Kubernetes Security Risks & Best Practices

Secrets Management & RBAC and K8s Permissions Oversight

Kubernetes Secrets are designed to manage sensitive data, but they require encryption and strict
access controls to prevent leakage. Security teams should use tools that enforce best practices
around secret encryption, usage auditing, and scope-limited access.

Overly permissive role-based access control (RBAC) increases the attack surface and may
inadvertently expose sensitive operations. Regular RBAC audits and least-privilege enforcement
mechanisms should be a core part of Kubernetes governance.

Internet Attacker Human Identity Role

K8s Pod

IAM Role NHIK8s Service Accout

Attached

Role

Full Access

Low Priv
ile

ges

sts:AssumeRole

AssumeRole

+999

How Upwind Protects Kubernetes
Upwind leverages real-time, runtime insights and correlates them with CI/CD and DevOps context,
giving you end-to-end visibility and protection for Kubernetes and associated workloads. By using
Upwind, security teams can:

• Prioritize Real Risk

Upwind leverages runtime insights to identify which packages are in use, internet-facing and
exploitable, helping you focus on real risk.

• Unify DevSecOps

Receive built-in DevOps context with every finding, including image version details and insights
into CVE diffs.

• Reduce Time to Remediation

Identify packages within your environment and their dependencies with our runtime software bill
of materials (SBOM). Streamline remediation efforts and easily search for packages by
framework, package manager and how many resources use each package.

• Streamline Investigations

Integrates with your CI/CD pipelines, including Jenkins, GitHub Actions, Circle CI and GitLab, to
automatically receive information on developer actions that led to code changes and resulting
vulnerabilities. Streamline your investigations and identify the root cause of problems with  
every finding.

As attackers increasingly target cloud-native environments, organizations must invest in tools that
go beyond static analysis and offer deep, runtime-aware protection. Upwind solves this problem by
visualizing Kubernetes topologies, monitoring runtime behavior, and integrating with CI/CD
pipelines to empower security teams to act with precision, reduce noise, and eliminate blind spots.

Top Kubernetes Security Risks & Best Practices

Top Kubernetes Security Risks & Best Practices

About Upwind
Upwind holistically secures containers & Kubernetes throughout the development lifecycle from
runtime to build time.

Container Security from Runtime to Build Time
Upwind gives you complete visibility and protection for all types of containers across Kubernetes,
Amazon ECS and Fargate. Correlate runtime insights with build time context, enable end-to-end
visibility and proactively stop threats with automated response.

Want to know more about Upwind’s container security solution? Visit or send
us a note at to schedule a brief demo and see real-time security in action.

 www.upwind.io
hello@upwind.io

Context-Rich Network  
Topology Mapping

Protect Containers in Multi-Cloud  
& Hybrid-Cloud Environments

Identify & Understand  
K8s Risks & Threats

http://www.upwind.io
mailto:hello@upwind.io

	k8s best practice cover.pdf
	k8s best practice 1.pdf
	k8s best practice 2.pdf
	k8s best practice 3.pdf
	k8s best practice 4.pdf
	k8s best practice 5.pdf
	k8s best practice 6.pdf
	k8s best practice 7.pdf
	k8s best practice 8.pdf
	k8s best practice 9.pdf
	k8s best practice 10.pdf

