
White PAper

Leveraging eBPF for  
Runtime Security:  
Upwind's Architecture for
Kernel-Level Observability  
and Threat Detection

leveraging ebpf for runtime security

While these patterns bring many benefits and increase agility, they also widen the attack surface of
user environments and obscure runtime behavior. Traditional security tooling struggles to keep up
with modern software development, particularly when constrained by agent-based architectures
or after-the-fact log analysis.

Upwind addresses these limitations by integrating eBPF at the foundation of its Cloud Native
Security Platform (CNAPP), to offer deep, low-latency observability and threat response, in real
time and directly from the Linux kernel.

1

User Space

Go Ruby C

eBPF

Tracing

Profiling

Monitoring

eBPF SDKs Application

Kernel

Verifier & JIT

Maps

OS Runtime

Kernel Helper API

Observability

Security

Controls

Load

Balancing

Networking

Network

Security

Behavioral

Security

eBPF Kernel Runtime eBPF

Cloud-native architectures introduce immense complexity. Monolithic
applications with single language code bases no longer reflect reality.
Ephemeral containers, microservices, dynamic networking, and
frequent code changes are now the norm.

leveraging ebpf for runtime security

What Is eBPF?
eBPF is a Linux kernel technology that safely runs user-defined programs at key kernel hook
points. Operating in a sandbox, it enables deep instrumentation of kernel and user-space events
without altering kernel code or using user-space agents, making it ideal for production
environments demanding performance, safety, and maintainability.

execution and increased efficiency for
key areas like observability, networking
and security, when leveraging eBPF  
to run custom programs inside the  
Linux kernel.

faster
10x

Because eBPF programs execute in kernel space, they provide several core benefits:

Real-time execution:  
eBPF programs run instantly on kernel hook events (e.g., syscalls, tracepoints, kprobes,
uprobes, XDP, TC), enabling fast response and visibility for profiling, monitoring, and security.

Low overhead, high throughput:  
Statically verified and JIT-compiled for efficiency, eBPF minimizes CPU and memory use,
enabling high-frequency tracing and metrics with minimal system impact.

Event-level granularity:  
eBPF attaches to low-level kernel events, capturing syscall params, stack traces, context
switches, TCP retransmits, and more for detailed performance insight.

Kernel-level visibility and privileged context:  
Running in kernel space gives eBPF access to kernel structures, memory, and execution
paths unavailable to user space - vital for observability and security.

2

leveraging ebpf for runtime security

Development

clang -target bpf

eBPF Program (C Source) eBPF Program (bytecode)

MapsProgram

Runtime

Verifier SocketseBPF Maps

JIT Compiler TCP/IP

syscall syscall

Linux Kernel

Go Library
sendmsg() recvmsg()

Process

Upwind’s Architecture:  
Embedding Security into the Kernel
In-Kernel Event Monitoring
Upwind deploys eBPF sensors to monitor kernel-level events including system calls, process
lifecycle, file operations, and network activity. These probes run asynchronously in the kernel and
emit telemetry data to the Upwind Platform via ring buffers or perf events.

3

eBPF has evolved into a general-purpose runtime for kernel-level telemetry and control. Its
flexibility and safety guarantees have led to its adoption in a wide range of domains—including
performance profiling, networking, and security. It is increasingly the backbone of modern
observability and security telemetry pipelines, offering deep, programmable insights into system
behavior with production-grade performance characteristics.

leveraging ebpf for runtime security

Security-Driven Contextualization

The power of eBPF-based telemetry lies not just in capturing kernel events, but in enriching and
correlating them with the dynamic state of cloud-native environments. Upwind enhances this by
converting low-level kernel signals into high-fidelity security and observability data through
layered contextualization, bridging raw system activity and meaningful insights.

App App

App App

Supporting Security
Observability

Processes Sidecar

Supporting Security
Observability

Processes Sidecar

vs

→TCP/IP

Network

Supporting Security Observability Processes

TCP/IP

Network

Kernel

Kernel

Sidecar Model Kernel Model

Upwind’s eBPF instrumentation records detailed kernel events - like syscalls, process lifecycles,
file and network I/O, and container transitions - and correlates them in real time with high-level
context across the cloud-native stack, including:

Kubernetes control plane metadata:  
Each event is tagged with pod- and service-level context - such as service names, ports,
labels, annotations, ingress configs, namespaces, and deployment versions - enabling kernel
events to be tied to microservices and their ownership domains for actionable telemetry and
fine-grained policy enforcement.

Cloud provider identity and infrastructure context:  
Events are enriched with cloud metadata like EC2 instance IDs, VPCs, ENIs, IAM roles,
security groups, and region/zone info, anchoring telemetry in infrastructure identity and trust
boundaries—crucial for multi-account and multi-region setups.

Runtime execution context:  
Upwind correlates runtime details like image digests, process trees, entrypoint commands,
and PID namespaces, providing insight into process lineage and drift, including unexpected
binaries, lateral movement, or post-exploitation activity.

4

leveraging ebpf for runtime security

This layered enrichment enables Upwind to map a low-level kernel signal to a high-level entity, such
as a specific Kubernetes microservice running a particular container image in a given namespace
with an associated IAM role and ingress exposure.

As a result, what would otherwise be opaque kernel noise becomes a semantically rich event tied
to a specific workload, version, and ownership group.

This enables:

Precise, context-aware alerting:  
Security rules use workload identity and behavior norms instead of generic syscall patterns,
reducing false positives and improving signal quality.

Forensic investigation with full stack traceability:  
Anomalous activity can be traced to a container image, build version, or deployment—even
after the container is gone—supporting incident response in ephemeral environments.

Fine-grained policy enforcement:  
Policies use high-level constructs instead of static IPs or ports. eBPF enables real-time
enforcement tied to containerized process identities.

This approach makes kernel-level telemetry a first-class signal in cloud-native security. Unlike
traditional CNAPP tools that depend on user-space agents or scraped metadata, Upwind delivers
runtime visibility with in-kernel precision - closing the gap in observability and enforcement for
ephemeral, distributed systems.

5

Cluster Node

User Space

Pod 1 Upwind Sensor Pod 2

Upwind Backend

Log Collection Infra & App Metrics Traces K8s Metadata

Upwind Platform

User

Kernel

eBPF

Step 1:

Real time telemetry data via Maps, Buffers, and
Events sent to Upwind Sensor from eBPF

Step 3:

Data is contextualized with data from other
sources in the Upwind Backend then sent to the
Upwind Platform

Step 2:

Data is sent from the Upwind Sensor to the Upwind
Backed via the Upwind Cluster Manager

Step 4:

You consume the data from the Upwind Platform

Upwind Cluster
Manager

4

3

2

1

leveraging ebpf for runtime security

Data Flow and API Visibility

Upwind uses eBPF to observe runtime data flows and API interactions without relying on OpenAPI
schemas, inline proxies, or traffic mirroring.

Traditional tools depend on code instrumentation, API contracts, or sidecars - methods that don’t
scale in dynamic microservice environments. Upwind avoids these by operating at the kernel
socket layer with kprobes on syscalls like sendmsg and recvmsg, capturing real-time network
activity across encrypted and plaintext traffic with minimal overhead.

6

leveraging ebpf for runtime security

This low-level vantage point allows Upwind to automatically extract and analyze:

HTTP and gRPC traffic semantics: 
Upwind inspects socket buffers to reconstruct API calls - paths, methods, headers, response
codes - for HTTP/1.x and gRPC, including TLS traffic when accessible at the syscall level or
in-memory.

Sensitive data payloads:  
eBPF probes scan payloads in real time for sensitive data signatures (PCI, PII, PHI) without
duplicating packets or using user-space engines, enabling high-throughput, in-kernel
detection.

Lateral data movement across services or tenants:  
By correlating socket communications with metadata (pod, namespace, cloud account),
Upwind maps inter-service flows and flags unauthorized cross-tenant or cross-workload
traffic.

Upwind’s eBPF model enables dynamic API mapping in production - even for undocumented or
versionless services - by observing real traffic at the syscall level, unlike tools reliant on OpenAPI
specs or SDKs.

7

leveraging ebpf for runtime security

The benefits of this approach are both operational and strategic:

Real-time threat detection:  
Upwind detects suspicious API behavior - like unexpected POSTs, data exfiltration, or access
from compromised containers - based on live behavior, not static rules or offline analysis.

Compliance and data governance:  
It continuously monitors sensitive data flows without scans or annotations, supporting GDPR,
HIPAA, and PCI-DSS by tracking access and movement for audit and breach response.

Upwind leverages eBPF as a live, distributed runtime sensor, giving security and platform teams
deep visibility into service behavior, data flows, and API usage across cloud-native infrastructure.

8

leveraging ebpf for runtime security

Scalable by Design

Rather than deploying sidecars and increasing overhead with scale, Upwind’s architecture uses
controlled, minimal-privilege execution paths to load and manage eBPF programs directly into the
kernel. These programs are attached dynamically to relevant kernel or user-space hook points,  
like tracepoints, kprobes, uprobes, network sockets via system APIs and netlink interfaces.  
This design yields several critical advantages:

Node

Node Pod Sidecar

Node

20 Pods/Node 20 Proxies/Node=

→

Kernel Supporting Security Observability Processes

Kernel

Elimination of traffic duplication and sidecar resource overhead:  
Traditional systems duplicate traffic using sidecars or packet capture tools, adding CPU,
memory overhead, and latency. Upwind uses eBPF to attach directly to L3/L4 kernel paths,
enabling zero-copy, in-kernel visibility without user space involvement.

Horizontal scalability across highly dynamic containerized environments:  
Sidecars and daemonsets struggle to scale in Kubernetes due to scheduling and lifecycle
constraints. Upwind deploys eBPF centrally, injecting programs into kernel contexts as
needed for consistent visibility and enforcement across ephemeral containers - without per-
container agents.

Minimal privileged footprint with scoped access and reduced attack surface: 
Upwind uses narrowly scoped privileges (e.g., and) and avoids
long-lived privileged processes, kernel patches, or out-of-tree modules. All logic runs in
verified, bounded kernel contexts, minimizing the attack surface while maintaining operational
safety.

CAP_BPF CAP_SYS_ADMIN

9

leveraging ebpf for runtime security

Performance Efficiency and Safety Guarantees

Upwind’s runtime engine is designed for production-grade performance, resilience, and
observability at scale. It leverages advanced eBPF kernel primitives to execute safely and
efficiently in high-density, high-throughput environments such as Kubernetes clusters with
thousands of pods and multi-tenant workloads.

Key to this performance and safety is Upwind’s use of core eBPF features, including:

Per-CPU ring buffers:  
Upwind uses structures allocated per CPU for lock-free, low-latency event
transport from kernel to user space. This avoids global locks and ensures real-time visibility
under high syscall or network load.

BPF_RINGBUF

Tail calls for modular execution chains:  
Upwind chains small, specialized eBPF programs at runtime using tail calls. This modular
model supports complex, distributed logic across hook points while staying within eBPF limits
for verifier approval and efficiency.

BPF maps for efficient state management:  
Upwind uses to cache runtime state like process lineage, connection tracking, and
access patterns. These fast, in-kernel stores enable efficient correlation without persistent
agents or external storage.

BPF_MAP

These optimizations keep Upwind’s telemetry engine lightweight and non-intrusive, even during
bursty traffic, rapid pod churn, or resource-heavy activity from noisy neighbors.

10

leveraging ebpf for runtime security

All eBPF programs are safely loaded into the kernel only after passing the static verifier, which
enforces a strict set of constraints: bounded loops, safe memory access, known instruction paths,
and valid stack frame usage. This verifier acts as a kernel-level static analysis engine, rejecting any
program that could lead to undefined behavior or kernel crashes, ensuring system stability and
reliability.

The result is a runtime instrumentation layer that is both performance-efficient and security-
hardened, capable of operating continuously in production without degrading latency, exhausting
resources, or increasing the operational burden. This design allows Upwind to deliver precise, real-
time telemetry and enforcement capabilities in environments where reliability, safety, and scale are
non-negotiable.

11

leveraging ebpf for runtime security

Conclusion
Upwind Security exemplifies how eBPF can be leveraged beyond observability - into full-stack
runtime protection. By combining kernel-level visibility with cloud-native intelligence, Upwind
offers a scalable, high-performance, and deeply integrated solution for securing modern
applications. For teams operating in complex Kubernetes, hybrid, or multi-cloud environments, this
approach represents a powerful and forward-looking narrative shift away from traditional security
and into the future.

Want to know more about Upwind’s use of eBPF? Visit or send us a note at
to schedule a brief demo and see real-time security in action.

 www.upwind.io
hello@upwind.io

http://www.upwind.io
mailto:hello@upwind.io

	eBPF - 1.pdf
	Leveraging eBPF-1.pdf
	Leveraging eBPF-2.pdf
	Leveraging eBPF-3.pdf
	Leveraging eBPF-4.pdf
	Leveraging eBPF-5.pdf
	Leveraging eBPF-6.pdf
	Leveraging eBPF-7.pdf
	Leveraging eBPF-8.pdf
	Leveraging eBPF-9.pdf
	Leveraging eBPF-10.pdf
	Leveraging eBPF-11.pdf
	eBPF - 12.pdf

